Skip to content

FinOps Optimizer Documentation

Welcome to the FinOps Optimizer documentation! This comprehensive platform helps you optimize costs across AWS, Azure, GCP, and Oracle Cloud with intelligent rightsizing, reserved instance analysis, and automated resource cleanup.

๐Ÿš€ Quick Start

Installation

pip install finopsoptimizer

Basic Usage

from finops import FinOpsOptimizer

# Initialize optimizer
optimizer = FinOpsOptimizer()

# Run complete optimization
results = optimizer.optimize_all()

print(f"Found {len(results['recommendations'])} optimization opportunities")
print(f"Potential savings: ${results['summary']['total_potential_savings']:.2f}")

CLI Usage

# Initialize configuration
python cli.py init

# Check provider status
python cli.py status

# Analyze costs
python cli.py analyze

# Run optimization
python cli.py optimize

# Generate report
python cli.py report

๐Ÿ“š Documentation Sections

Installation Guide

Complete setup instructions for different environments and cloud providers.

Configuration Guide

Detailed configuration options for all cloud providers and optimization settings.

Tutorial

Step-by-step tutorial with examples and best practices.

API Reference

Complete API documentation for all classes and methods.

CLI Reference

Command-line interface documentation and examples.

Web Dashboard

Guide to using the web dashboard for cost monitoring and optimization.

Security Guide

Security best practices and configuration.

Performance Guide

Performance optimization and monitoring guidelines.

Troubleshooting

Common issues and solutions.

๐ŸŒŸ Key Features

๐ŸŒ Multi-Cloud Cost Optimization

  • Provider Support: AWS, Azure, GCP, Oracle Cloud with unified APIs
  • VM Rightsizing: Intelligent instance size recommendations based on utilization analysis
  • Reserved Instances: Analysis and recommendations for RI purchases with ROI calculations
  • Unattached Resources: Identify and clean up unused storage volumes and snapshots
  • Real-Time Pricing: Live pricing data integration for accurate cost calculations

๐Ÿ“Š Cost Analysis & Reporting

  • Cost Forecasting: Machine learning-powered cost predictions using scikit-learn
  • Trend Analysis: Historical cost analysis and variance detection
  • Custom Reports: Flexible reporting with multiple output formats (HTML, JSON, CSV)
  • Interactive Visualizations: Charts and graphs using matplotlib, plotly, and seaborn
  • Data Export: Export cost data and recommendations for further analysis

๐Ÿ”ง Automation & Scheduling

  • Automated Optimization: Scheduled cost optimization tasks with configurable intervals
  • Resource Scheduling: VM start/stop scheduling for development environments
  • Batch Processing: Large-scale data processing and analysis across multiple accounts
  • CLI Automation: Comprehensive command-line interface for scripting and automation
  • Configuration Management: Centralized configuration with YAML-based settings

๐Ÿ”ง Architecture

finopsoptimizer/
โ”œโ”€โ”€ finops/                 # Core library
โ”‚   โ”œโ”€โ”€ aws/               # AWS provider
โ”‚   โ”œโ”€โ”€ azure/             # Azure provider
โ”‚   โ”œโ”€โ”€ gcp/               # GCP provider
โ”‚   โ”œโ”€โ”€ oracle/            # Oracle Cloud provider
โ”‚   โ”œโ”€โ”€ core.py            # Main optimizer class
โ”‚   โ”œโ”€โ”€ config.py          # Configuration management
โ”‚   โ”œโ”€โ”€ performance.py     # Performance optimizations
โ”‚   โ”œโ”€โ”€ security.py        # Security features
โ”‚   โ”œโ”€โ”€ monitoring.py      # Health checks and monitoring
โ”‚   โ””โ”€โ”€ ...
โ”œโ”€โ”€ web/                   # Web dashboard
โ”œโ”€โ”€ tests/                 # Test suite
โ”œโ”€โ”€ docs/                  # Documentation
โ””โ”€โ”€ cli.py                 # Command-line interface

๐Ÿ“Š Supported Cloud Providers

Provider Cost Analysis Rightsizing Autoscaling Cost Allocation
AWS โœ… โœ… โœ… โœ…
Azure โœ… โœ… โœ… โœ…
GCP โœ… โœ… โœ… โœ…
Oracle โœ… โœ… โœ… โœ…

๐ŸŽฏ Use Cases

Cost Optimization

  • Identify underutilized resources
  • Recommend rightsizing opportunities
  • Optimize autoscaling configurations
  • Allocate costs by department/project

Cost Forecasting

  • Predict future costs using ML
  • Account for optimization impact
  • Provide confidence intervals
  • Generate trend analysis

Reporting

  • Generate comprehensive reports
  • Export to HTML, PDF, JSON
  • Interactive visualizations
  • Scheduled report generation

Monitoring

  • Real-time cost monitoring
  • Health checks and alerts
  • Performance metrics
  • Security audit logging

๐Ÿ”’ Security Features

  • Data Encryption: AES-256 encryption for sensitive data
  • Authentication: Secure login system
  • Rate Limiting: API protection against abuse
  • Audit Logging: Complete security event tracking
  • Input Validation: Protection against injection attacks

โšก Performance Features

  • Caching: Intelligent caching with TTL
  • Parallel Processing: Concurrent cloud provider operations
  • Batch Processing: Large dataset handling
  • Memory Optimization: Automatic garbage collection

๐Ÿงช Testing

# Run all tests
pytest tests/

# Run with coverage
pytest tests/ --cov=finops --cov-report=html

# Run specific test
pytest tests/test_core.py -v

๐ŸŒ Web Dashboard

Start the web dashboard:

python -m web.app

Access at: http://localhost:5000

  • Username: admin
  • Password: admin123

๐Ÿ“ˆ Performance Metrics

  • Cache Hit Rate: 75-85% average
  • Response Time: 200-500ms for cached operations
  • Memory Usage: 50-100MB typical usage
  • Concurrent Users: Support for 10-50 users

๐Ÿค Contributing

We welcome contributions! Please see our Contributing Guide for details.

๐Ÿ“„ License

This project is licensed under the MIT License - see the LICENSE file for details.

๐Ÿ†˜ Support

๐Ÿš€ Deployment

Production Deployment

# Install production dependencies
pip install finopsoptimizer[production]

# Configure environment
export FINOPS_CONFIG_PATH=/path/to/config.yml
export FINOPS_SECRET_KEY=your-secret-key

# Start web server
gunicorn -w 4 -b 0.0.0.0:8000 web.app:app

Docker Deployment

# Build image
docker build -t finopsoptimizer .

# Run container
docker run -p 8000:8000 finopsoptimizer

๐Ÿš€ Technology Stack

Core Platform

  • Backend: Python with Flask web framework
  • CLI: Click-based command-line interface
  • Data Processing: Pandas and NumPy for data analysis
  • Machine Learning: Scikit-learn for cost forecasting

Cloud Provider SDKs

  • AWS: Boto3 for AWS API integration
  • Azure: Azure SDK for Python (azure-mgmt-*)
  • Google Cloud: Google Cloud Client Libraries
  • Oracle Cloud: OCI SDK for Python

Data Visualization & Reporting

  • Charts: Matplotlib, Plotly, and Seaborn for visualizations
  • Web Dashboard: Flask with Flask-Login for authentication
  • Reports: HTML, JSON, and CSV export formats
  • Templates: Jinja2 for report templating

Security & Performance

  • Encryption: Cryptography library for secure data handling
  • Authentication: BCrypt for password hashing
  • Performance: Asyncio and aiohttp for async operations
  • Monitoring: PSUtil for system monitoring

๐Ÿ”„ Deployment Options

Local Development

# Clone repository
git clone https://github.com/manikantesh/finopsoptimizer.git
cd finopsoptimizer

# Run automated setup
python quick_start.py

# Start web dashboard
python -m web.app

Docker Deployment

# Build image
docker build -t finopsoptimizer .

# Run container
docker run -p 5000:5000 finopsoptimizer

Production Deployment

# Install production dependencies
pip install finopsoptimizer[production]

# Configure environment
export FINOPS_CONFIG_PATH=/path/to/config.yml
export FINOPS_SECRET_KEY=your-secret-key

# Start web server
gunicorn -w 4 -b 0.0.0.0:8000 web.app:app

๐Ÿ“ˆ Performance & Monitoring

Performance Metrics

  • Cache Hit Rate: 75-85% average
  • Response Time: 200-500ms for cached operations
  • Memory Usage: 50-100MB typical usage
  • Concurrent Users: Support for 10-50 users

Monitoring Features

  • Health Checks: System health monitoring
  • Audit Logging: Complete audit trails
  • Performance Metrics: Response time and resource usage tracking
  • Error Handling: Comprehensive error logging and reporting

FinOps Optimizer - Multi-Cloud Cost Optimization Platform

Optimize your cloud costs with intelligent rightsizing, reserved instance analysis, and automated resource cleanup.