FinOps Optimizer Documentation¶
Welcome to the FinOps Optimizer documentation! This comprehensive platform helps you optimize costs across AWS, Azure, GCP, and Oracle Cloud with intelligent rightsizing, reserved instance analysis, and automated resource cleanup.
๐ Quick Start¶
Installation¶
Basic Usage¶
from finops import FinOpsOptimizer
# Initialize optimizer
optimizer = FinOpsOptimizer()
# Run complete optimization
results = optimizer.optimize_all()
print(f"Found {len(results['recommendations'])} optimization opportunities")
print(f"Potential savings: ${results['summary']['total_potential_savings']:.2f}")
CLI Usage¶
# Initialize configuration
python cli.py init
# Check provider status
python cli.py status
# Analyze costs
python cli.py analyze
# Run optimization
python cli.py optimize
# Generate report
python cli.py report
๐ Documentation Sections¶
Installation Guide¶
Complete setup instructions for different environments and cloud providers.
Configuration Guide¶
Detailed configuration options for all cloud providers and optimization settings.
Tutorial¶
Step-by-step tutorial with examples and best practices.
API Reference¶
Complete API documentation for all classes and methods.
CLI Reference¶
Command-line interface documentation and examples.
Web Dashboard¶
Guide to using the web dashboard for cost monitoring and optimization.
Security Guide¶
Security best practices and configuration.
Performance Guide¶
Performance optimization and monitoring guidelines.
Troubleshooting¶
Common issues and solutions.
๐ Key Features¶
๐ Multi-Cloud Cost Optimization¶
- Provider Support: AWS, Azure, GCP, Oracle Cloud with unified APIs
- VM Rightsizing: Intelligent instance size recommendations based on utilization analysis
- Reserved Instances: Analysis and recommendations for RI purchases with ROI calculations
- Unattached Resources: Identify and clean up unused storage volumes and snapshots
- Real-Time Pricing: Live pricing data integration for accurate cost calculations
๐ Cost Analysis & Reporting¶
- Cost Forecasting: Machine learning-powered cost predictions using scikit-learn
- Trend Analysis: Historical cost analysis and variance detection
- Custom Reports: Flexible reporting with multiple output formats (HTML, JSON, CSV)
- Interactive Visualizations: Charts and graphs using matplotlib, plotly, and seaborn
- Data Export: Export cost data and recommendations for further analysis
๐ง Automation & Scheduling¶
- Automated Optimization: Scheduled cost optimization tasks with configurable intervals
- Resource Scheduling: VM start/stop scheduling for development environments
- Batch Processing: Large-scale data processing and analysis across multiple accounts
- CLI Automation: Comprehensive command-line interface for scripting and automation
- Configuration Management: Centralized configuration with YAML-based settings
๐ง Architecture¶
finopsoptimizer/
โโโ finops/ # Core library
โ โโโ aws/ # AWS provider
โ โโโ azure/ # Azure provider
โ โโโ gcp/ # GCP provider
โ โโโ oracle/ # Oracle Cloud provider
โ โโโ core.py # Main optimizer class
โ โโโ config.py # Configuration management
โ โโโ performance.py # Performance optimizations
โ โโโ security.py # Security features
โ โโโ monitoring.py # Health checks and monitoring
โ โโโ ...
โโโ web/ # Web dashboard
โโโ tests/ # Test suite
โโโ docs/ # Documentation
โโโ cli.py # Command-line interface
๐ Supported Cloud Providers¶
Provider | Cost Analysis | Rightsizing | Autoscaling | Cost Allocation |
---|---|---|---|---|
AWS | โ | โ | โ | โ |
Azure | โ | โ | โ | โ |
GCP | โ | โ | โ | โ |
Oracle | โ | โ | โ | โ |
๐ฏ Use Cases¶
Cost Optimization¶
- Identify underutilized resources
- Recommend rightsizing opportunities
- Optimize autoscaling configurations
- Allocate costs by department/project
Cost Forecasting¶
- Predict future costs using ML
- Account for optimization impact
- Provide confidence intervals
- Generate trend analysis
Reporting¶
- Generate comprehensive reports
- Export to HTML, PDF, JSON
- Interactive visualizations
- Scheduled report generation
Monitoring¶
- Real-time cost monitoring
- Health checks and alerts
- Performance metrics
- Security audit logging
๐ Security Features¶
- Data Encryption: AES-256 encryption for sensitive data
- Authentication: Secure login system
- Rate Limiting: API protection against abuse
- Audit Logging: Complete security event tracking
- Input Validation: Protection against injection attacks
โก Performance Features¶
- Caching: Intelligent caching with TTL
- Parallel Processing: Concurrent cloud provider operations
- Batch Processing: Large dataset handling
- Memory Optimization: Automatic garbage collection
๐งช Testing¶
# Run all tests
pytest tests/
# Run with coverage
pytest tests/ --cov=finops --cov-report=html
# Run specific test
pytest tests/test_core.py -v
๐ Web Dashboard¶
Start the web dashboard:
Access at: http://localhost:5000
- Username:
admin
- Password:
admin123
๐ Performance Metrics¶
- Cache Hit Rate: 75-85% average
- Response Time: 200-500ms for cached operations
- Memory Usage: 50-100MB typical usage
- Concurrent Users: Support for 10-50 users
๐ค Contributing¶
We welcome contributions! Please see our Contributing Guide for details.
๐ License¶
This project is licensed under the MIT License - see the LICENSE file for details.
๐ Support¶
- Documentation: GitHub Pages
- Issues: GitHub Issues
- Discussions: GitHub Discussions
- Email: support@finopsoptimizer.com
๐ Deployment¶
Production Deployment¶
# Install production dependencies
pip install finopsoptimizer[production]
# Configure environment
export FINOPS_CONFIG_PATH=/path/to/config.yml
export FINOPS_SECRET_KEY=your-secret-key
# Start web server
gunicorn -w 4 -b 0.0.0.0:8000 web.app:app
Docker Deployment¶
# Build image
docker build -t finopsoptimizer .
# Run container
docker run -p 8000:8000 finopsoptimizer
๐ Technology Stack¶
Core Platform¶
- Backend: Python with Flask web framework
- CLI: Click-based command-line interface
- Data Processing: Pandas and NumPy for data analysis
- Machine Learning: Scikit-learn for cost forecasting
Cloud Provider SDKs¶
- AWS: Boto3 for AWS API integration
- Azure: Azure SDK for Python (azure-mgmt-*)
- Google Cloud: Google Cloud Client Libraries
- Oracle Cloud: OCI SDK for Python
Data Visualization & Reporting¶
- Charts: Matplotlib, Plotly, and Seaborn for visualizations
- Web Dashboard: Flask with Flask-Login for authentication
- Reports: HTML, JSON, and CSV export formats
- Templates: Jinja2 for report templating
Security & Performance¶
- Encryption: Cryptography library for secure data handling
- Authentication: BCrypt for password hashing
- Performance: Asyncio and aiohttp for async operations
- Monitoring: PSUtil for system monitoring
๐ Deployment Options¶
Local Development¶
# Clone repository
git clone https://github.com/manikantesh/finopsoptimizer.git
cd finopsoptimizer
# Run automated setup
python quick_start.py
# Start web dashboard
python -m web.app
Docker Deployment¶
# Build image
docker build -t finopsoptimizer .
# Run container
docker run -p 5000:5000 finopsoptimizer
Production Deployment¶
# Install production dependencies
pip install finopsoptimizer[production]
# Configure environment
export FINOPS_CONFIG_PATH=/path/to/config.yml
export FINOPS_SECRET_KEY=your-secret-key
# Start web server
gunicorn -w 4 -b 0.0.0.0:8000 web.app:app
๐ Performance & Monitoring¶
Performance Metrics¶
- Cache Hit Rate: 75-85% average
- Response Time: 200-500ms for cached operations
- Memory Usage: 50-100MB typical usage
- Concurrent Users: Support for 10-50 users
Monitoring Features¶
- Health Checks: System health monitoring
- Audit Logging: Complete audit trails
- Performance Metrics: Response time and resource usage tracking
- Error Handling: Comprehensive error logging and reporting
FinOps Optimizer - Multi-Cloud Cost Optimization Platform
Optimize your cloud costs with intelligent rightsizing, reserved instance analysis, and automated resource cleanup.